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The properties of steady and unsteady ship waves propagating on a free surface 
discretized with panels are studied. The wave propagation is characterized by an 
explicit discrete dispersion relation which allows the systematic analysis of the 
distortion of the wave pattern due to discretization and the derivation of a stability 
criterion to be met by the numerical algorithm. The conclusions of the study are 
applied to a panel method used for the computation of steady and time-harmonic 
fiee-surface flows past elementary singularities and a ship hull. 

1. Introduction 
In recent years, numerous studies have attempted the solution of the invicid 

steady flow past ships by the distribution of Rankine singularities over the ship hull 
and part of the free surface, following the pioneering work of Dawson (1977) (see 
Aanesland 1986; P. S. Jensen, Mi & Soding 1986; G. Jensen 1988; P. S. Jensen 1987; 
Ni 1987 ; Raven 1988 ; Sclavounos & Nakos 1988 ; Van Beek, Piers & Sloof 1985 ; Xia 
& Larsson 1986). The principal motivation for adopting this approach is the 
enforcement of linearized free-surface conditions with variable coefficients, with the 
ultimate objective of the solution of the fully nonlinear problem. We lack, however, 
an adequate understanding of the nature of the distortion of the ship wave pattern 
caused by the discretization of the free surface. This is the subject of the present 
paper. 

Linear gravity. waves of frequency w and vector wavenumber k = (u,v) 
propagating on the free surface obey a dispersion relation #(w,  k) = 0, the form of 
which depends on the selection of the coordinate system relative to which the 
frequency w is defined. Linearization and the homogeneity of the free-surface 
condition allow the Fourier decomposition of a wave disturbance as follows: 

wheref"(k) is the Fourier transform of the forcing and r is the horizontal radial vector 
from the origin of the coordinate system. The form of the wave-like component of 
this disturbance may be obtained from the large-r asymptotics of the Fourier 
integral (1.1).  Lighthill (1960) derived the relevant theory which relates the 
amplitude, wavelength and direction of propagation of waves found in direction r to 
the dispersion relation polar in the (u, w)-plane and its gradients with respect to w and 
k. This theory is reviewed in $2 and is applied to the steady-state and time-harmonic 
surface waves propagating on a uniform stream. 

This theory allows the characterization of waves propagating on a free surface 
which is discretized by plane quadrilaterals, as long as a dispersion relation 
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associated with the resulting discrete linear system can be defined. Assuming a 
polynomial variation of the velocity potential over each quadrilateral, the theory of 
discrete Fourier transforms may be applied as in Sclavounos & Nakos (1988) 
(hereinafter referred as A) to derive such a ‘discrete ’ dispersion relation W(o, k; Fh ; 
a)  = 0. This dispersion relation depends on two additional parameters arising from 
the discretization: the grid Froude number Fh = U/(gh,)i, where U is the forward 
speed and g the gravitational acceleration; and the ratio a = h,/h, of the panel 
dimensions in the streamwise and transverse directions. The consistency of the 
discretization requires that W + @  as h,,hy+O with a kept finite constant. This 
condition is easy to satisfy in most numerical schemes. What determines if the waves 
propagate on the discretized free surface in a physically acceptable manner is the 
form of W for finite Fh and a. 

A free surface discretized by panels may therefore be regarded as a medium that 
admits the dispersion relation W = 0. A rectangular free-surface panel mesh cannot 
resolve wavelengths smaller than 2h, and 2h, in the x- and y-directions, or 
wavenumbers (u, v)  greater in modulus than the cut-off values u* = n/h,  and v* = 
n/h,,  respectively. The effects of shorter waves are, however, indirectly present 
through aliasing. The discrete dispersion-relation polar has a periodic structure in 
both the u- and v-directions. Contributions to the wave disturbance from the points 
on the polar satisfying IuI > u*, Iwl > v* are reflected or aliased into the principal 
wavenumber domain lul < u*, Ivl < v*, carrying information from the short scales 
which cannot be directly resolved by the adopted panel dimensions. As h, and h, 
decrease, the principal wavenumber domain grows, the part of the discrete polar 
lying within it tends to its continuous limit and the periodic reflections of the discrete 
polar are removed to infinity. 

Discretization errors may be quantified by comparing the location and gradients 
of the discrete and continuous dispersion-relation polars lying in the principal 
wavenumber domain. The largest errors occur to the components of the wave 
disturbance with wavenumbers near the cut-off values u* and v*. In 93, the theory 
of 92 is used to study the effects of discretization on the location, amplitude and 
direction of propagation of the numerical wave disturbance. In the steady problem, 
for example, an inappropriate Selection of the parameters Fh and CL for a consistent 
discretization, will lead to polars which allow waves to propagate at right angles to 
the incident stream, outside of the Kelvin wake. Consequently, consistency alone will 
not ensure a physically acceptable disturbance. It must be supplemented by a 
stability criterion which selects proper combinations of the parameters Fh and a in 
steady and time-harmonic problems. 

The formal definition of stability of the numerical algorithm for steady and time- 
harmonic disturbances is given in $4. In  the continuous problem, real wavenumbers 
k always correspond to real o, therefore defining a stable linear system. The discrete 
dispersion relation, on the other hand, may accept complex o for real k. In $4 a 
stability criterion is derived for both steady and time-harmonic flows which limits 
the freedom in the selection of the parameters Fh, a in a given numerical algorithm. 
Extensions of this stability analysis to transient free-surface flows are outlined in $5.  

Section 6 illustrates the performance of a panel method based on a quadratic- 
spline approximation of the velocity potential used for the computation of steady 
and time-harmonic flows past a submerged wave source, a thin strut of infinite 
draught and the Wigley hull. Comparison with analytical solutions for the submerged 
source and the thin ship confirms the qualities of the numerical algorithm predicted 
by the theory of 993 and 4. 
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FIQURE 1. The Cartesian coordinate system. 

2. The continuous dispersion relation 
Consider a Cartesian coordinate system (figure 1) fixed relative to a disturbance 

which advances with constant velocity U in the negative x-direction. The origin is 
located on the mean position of the free surface and the z-axis points upwards. 
Assuming an inviscid and irrotational flow, the velocity potential q5 governing the 
resulting linearized free-surface problem satisfies the Laplace equation in the fluid 
domain and is subject to the free-surface condition 

where g is the gravitational acceleration. 
In response to a time-harmonic excitation a t  a frequency w ,  solutions subject to 

(2.1) accept the general Fourier decomposition on the mean position of the free 
surface 

k u ,  v) e-i(ffz+vy) 

#(x, y) = @-to+ lim { ( 2 W  -m r m d u r m d v  -m W(u, - v ; w - is) 
- 

where @(U) v ; w )  = - (w - UU)2 + g(u* + V 2 ) t  (2.3) 

The real part of all complex quantities is understood hereafter, with the complex 
factor eiwt omitted throughout. In (2.2) the Rayleigh viscosity 8 > 0 is introduced for 
the enforcement of the radiation condition. The forcing function f(x, y) is assumed to 
possess a Fourier transform h u ,  v) which decays sufficiently rapidly as IuI, lvl --f GO for 
the integral (2.2) to be convergent. The solution (2.2) consists of a ‘local’ non- 
radiating disturbance and a ‘ free-wave ’ field. This decomposition can be formally 
justified by complex contour integration in (2.2). 

Here attention will be focused on the free-wave field. The wavenumber vector 
k = (u, v) identifies a free-wave component forced a t  the frequency w so long as it 
points to a curve in the (u, w)-plane defined by the dispersion relation 

I w2 2 w u  u2 
9 9  9 

W(u,w;w) = --++uu-u2+(u2+v2)1 = 0. (2.4) 

This curve is hereafter referred to as the dispersion-relation polar. Given w ,  the polar 
(2.4) consists of three or two branches depending on whether the parameter 7 = wU/g 
is less or greater than the critical value 7, = a, respectively. Figure 2 illustrates the 
branches obtained for T = 0,0.2, 0.5, 1. Each branch of (2.4) corresponds to a ‘wave 
system’. At the critical value 7, = a, the closed loop around the origin meets the 
branch which lies in the negative u-plane for 7 < a, and the corresponding wave 
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FIGURE 2.  The polars of the continuous dispersion relation corresponding to 7 = 0, 0.2,0.5,1 .O. The 
small figure at  the bottom amplifies the region around the origin. The vectors drawn on the various 
branches of the polars show the direction of propagation of the corresponding wave systems. 

systems merge for values of T > t. In the steady limit (w = 0, U > 0 ) ,  the closed 
branch around the origin shrinks to zero, while the two open branches become 
symmetric with respect to the v-axis and end up representing a common wave 
system, the Kelvin wave pattern. All branches drawn in figure 2 are symmetric with 
respect to the u-axis owing to the symmetry of the flow about the y = 0 plane. 

By applying the method of stationary phase to the Fourier integral (2.2) for large 
values of r = (2, y), Lighthill (1960) derived an expression relating the free waves 
governed by the dispersion relation (2.4) to the shape of the dispersion relation polar 
and its gradients with respect to the (u, v) wavenumbers. The principal results of this 
analysis are summarized below. 

A free-wave component corresponding to some point on the polar (2.4) is found in 
the direction pointed by the group-velocity vector 

which by definition is normal to the polar a t  the selected point. The choice between 
the two iossible directions of this normal follows from the enforcement of the 
radiation condition which requires that the energy of each wave component must 
propagate towards infinity. Normal vectors pointing in the direction of the group 
velocity are drawn in figure 2 on the various branches of the dispersion-relation 
polar. For 7 = 0.2 the wave system associated with the closed branch covers the 
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entire free surface, while each of the two open branches defines wave systems that are 
included within sectors trailing the disturbance. Their half-angle is equal to the angle 
formed between the u-axis and the normal vector at  the inflection point of the 
corresponding branch of the polar. 

The velocity potential in the far field is, to leading order for large r = Irl, 
proportional to 

where B is the angular position in the far field determined by the group-velocity 
vector'(2.5) and K is the curvature of the dispersion relation polar at the corresponding 
point. Expression (2.6) becomes singular when K = 0, which occurs at inflection 
points of the polar. They correspond to the caustics of the wave disturbance and the 
asymptotic analysis that produced (2.6) must be revised to account for the 
coalescence of two stationary points leading to an d decay of the wave disturbance 
along the caustic. A second singular case arises when 1V-W I = 0 which, by virtue of 
(2.5), corresponds to the vanishing of the group velocity for some wave component. 
This is the case at  7 = a and signifies the failure of linear theory tc, model the wave 
disturbance. 

An important component of expression (2.6) is the magnitude of the Fourier 
transform of the forcingfiu, v) .  It can be shown that if the 'wavemaking source' is 
a translating and/or oscillating fully submerged body, the corresponding f decays 
exponentially for large k and the resulting free waves contain very little energy in the 
short scales. For a surface-piercing body on the other hand, f" decays only 
algebraically and the corresponding wave field contains short waves carrying a 
significant amount of energy. The short waves are associated with the open branches 
of the dispersion relation which for large-k have a slope such that the shortest waves 
are visible near the track of the disturbance, with their wavelength tending to zero 
along the track. 

3. The discrete dispersion relation 
A class of numerical methods solve the potential flow around realistic ship forms 

by the distribution of panels on the ship hull and part of the free surface. They can 
treat free-surface conditions with variable coefficients which are more accurate than 
(2.1) near the ship hull, which have also been used lately for the solution of the fully 
nonlinear problem (see G .  Jensen 1988; Ni 1987). 

In the linearized case, the principal scepticism about this approach, as opposed to 
methods that distribute wave singularities over the ship surface alone, relates to its 
ability to properly model the propagation of the wave disturbance on a discretized 
free surface. In this section, a dispersion relation is derived governing this wave 
propagation problem, hereafter referred to as the discrete dispersion relation, and the 
continuous and discrete wave patterns are compared by applying the theory of $2. 

Consider the enforcement of the linearized free-surface condition (2.1) by a 
distribution of Rankine singularities over the free surface. Applying Green's second 
identity to the velocity potential $(x) and the Rankine source potential G(x;<) = 
1/27cr = 1/(27cIx-{l), we obtain for any fixed x on the z = 0 plane 
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FIGURE 3. A portion of the free-surface mesh. The panels are numbered by the vector index 
j = (js, jY), where j, and j ,  count in the x- and y-directions respectively. 

where both integrations are carried out over the entire free surface (FS) and the 
forcing function f ( x )  corresponds to a model applied pressure distribution, decaying 
fast enough at large distance from the origin so that the integral of the right-hand 
side of (3.1) is convergent for any finite x. Moreover, at a fixed finite x, the 
contribution from the closing surface at  infinity vanishes owing to the r-i decay of 
q5 and the r-l decay of G as 151 -+ co . The radiation condition will be enforced at  a later 
stage of the solution procedure. 

Taking the Fourier transform of the integral equation (3.1) with respect to the (x, 
y)-coordinates and applying the convolution theorem, the continuous solution is 
obtained in the explicit form (2.2), where @ ( u , v ; w )  is the ratio of the Fourier 
transforms of the integral operators of the left- and right-hand sides of (3.1), and it 
can be shown that it is given by (2.3). 

The discretization of (3.1) starts with the definition of a rectangular grid on the free 
surface. For the derivation of the discrete dispersion relation it is appropriate to 
assume that the grid is of infinite extent and of uniform spacing h, and h, in the x- 
and y-directions respectively. The effect of a truncated free-surface grid on the wave 
propagation, and in particular with regard to the enforcement of the radiation 
condition, is discussed in $6. On this mesh, illustrated in figure 3, the unknown 
velocity potential is approximated by a linear combination of polynomial basis 
functions of finite support centred at the panel centroids, or 

The summation in (3.2) is carried out over the vector index j = (j,,ju), for all integer 
values of j, and j,. This compact summation notation is implied in the subsequent 
analysis, unless otherwise noted. The function Bj(x) is the basis function centred at  
the j t h  panel and the constant ai is the associated weight. 

An essential characteristic of the numerical scheme is the method of treatment of 
the convective derivatives in (3.1). They may be evaluated analytically by direct 
differentiation of the underlying basis function Bi(x), or they may be approximated 
by finite-difference schemes. A number of alternative choices are derived and 
discussed in A for the steady problem. Here, we study a quadratic spline scheme 
using the quadratic B-spline as the basis function. The discrete solution (3.2) has 
continuous value and slope in both the x- and y-directions, which permits the 
analytical evaluation of the derivatives @/a[) and (az/a[2) in (3.1). 



Steady and unsteady ship wave patterns 269 

Substitution of (3.2) in (3.1) and collocation at  the panel centroids xi, leads to the 
discrete formulation : 

where 

(3.3) 

B, = Bj(xi) = B,, (3.4a) 

(3.4b) 

(3 .44  

In analogy to the continuous problem, the theory of discrete Fourier transforms is 
applied to transform (3.3) in the Fourier space. It follows that 

with 
i d h  =I?, (3.5) 

L(6, v" ; w ; Fh, a )  = - Q2Z,(6, v" ; a) + 2QFh Zl(&, 6 ; a) -F; Z,(&, v" ; a )  + 1, (3.6) 

= o(h,/g)i and the grid Froude number and panel aspect ratio are defined where 

The quantities Ern, m = 0 , 1 , 2  are explicit functions of the non-dimensional 
wavenumbers 4 = uh,/2n, v" = vh,/2n and the panel aspect ratio a, and are defined 

by + W  ( - )k+l 

k ,  l--w (k + t 1 ) 3 - ~ ( ~ +  v")3[(k + G ) ~  + a2(1 + 6 ) 2 ~ i  
+W ( - )k+1 

Crn(6,6;a) = (2n) 
x 

, m = 0 , 1 , 2 .  (3.8) 

x 
k ,  +-w (k + '6)'(Z + 6)3 

From this definition it follows that the functions C,, m = 0 , 1 , 2  are periodic in both 
u and v, with periods 2n/h, and 2x/h, respectively. The consistency of the numerical 
algorithm may be established by studying the small h,, h, limit of Zrn. It follows from 
the Taylor expansion of (3.8) for small 6 and 6 that 

Urn 
m = 0 , 1 , 2 .  (3.9) - 6" 

lim Z,(Zi,.G;a) = ( 2 7 ~ ) ~ - l  1 - ( U 2 + v 2 ) 4 >  
ti, d-rO (a2 + a2d2)i 

The details of the derivation of expression (3.8) and its limit (3.9) can be found in A. 
Equation (3.5) can be transformed back to the real space by using the inverse 

discrete Fourier transform, leading to the following expression for q5h : 

(3.10) 

valid only pointwise at  the collocation points ( z j , y j ) .  The variation of the discrete 
solution at intermediate points over the free surface is determined by (3.2). The finite 
limits of integration in (3.10) signify that variation due to wave components of 
wavelength smaller than the cut-off wavelengths 2h, and 2h, cannot be resolved on 
the (&, h,)-grid. The two-dimensional range of integration in (3.11), lul < nfh,, Ivl < 
n/hu, is hereafter referred to as the principal wavenumber domain. 
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The energy of shorter waves is, however, reflected into the principal wavenumber 
domain through the phenomenon of aliasing. Using the Poisson summation formula, 
the discrete Fourier transform of the forcing function, R ,  may be expressed in the 
form 

A(U,V;h, ,h , )=  (3.11) 
I 2 ~ , k ~ + ( w + ~ ) 1 ' ;  

where the effect of aliasing becomes transparent. Substituting (3.11) into (3.10) and 
taking advantage of the periodicity of i, the limits of integration in (3.10) can be 
extended to +a leading to the following alternative expression for the discrete 

with 

In view of (3.12), it follows that the discrete dispersion relation is defined as 

@(u, w ; w ; Fn, a) = (u' + v2)X(u, 2, ; w ; Fh, a). (3.13) 

@(u,V;w;Fh,cL)  = 0. (3.14) 

The theory of $2 is next applied for the description of the time-harmonic wave 
disturbance excited at  the frequency w .  The comparison of the continuous and 
discrete dispersion relations (2.4) and (3.14) reveals the differences between the 
respective wave fields and is used to  establish the stability and convergence of the 
adopted numerical scheme. 

Polars of (3.14) are illustrated in figure 4(a) for 7 = wU/g = 0,0.2,0.5,1 and (Fh = 
d2, a = 1) .  All polars are symmetric about the u-axis and periodic in the u- and v- 
directions, with periods 2x/h ,  and 2n/hy respectively. It is, therefore, sufficient to 
display only the upper half of the principal wavenumber domain. As in the 
continuous problem, pairs of (u, v) that solve (3.14) lie either on three or two separate 
branches, depending on whether 7 is less or greater than the critical value T;, which 
owing to  discretization is slightly shifted from the value a of the continuous problem. 
The same figure shows the corresponding polars of the continuous dispersion relation 
which are found to be in very good agreement with the discrete polars only over the 
inner portion of the principal wavenumber domain. 

The polars of the discrete dispersion relation, for the same frequencies but a 
different panel mesh (Fh = 1, a = 4), are shown in figure 4(b) .  The topology of this set 
of discrete polars is seen to be drastically different from that of their continuous 
counterparts, in particular close to the boundaries of the principal wavenumber 
domain. Crossing of polars corresponding to different frequencies signifies the 
inversion of the direction of propagation of the associated wave components, 
rendering them physically unacceptable. It will be shown in $4, that the grid (Fh = 
1, a = 4) corresponds to an unstable scheme. 

A convergent numerical algorithm must be consistent and stable. Consistency is 
here ensured by verifying that for all finite u and v the discrete and continuous 
dispersion relation polars coalesce in the limit as h,, h, + 0. This condition is easy to 
show by substituting in (3.6)-(3.13) the limiting values of C,,m = 0 ,1 ,2  given by 
(3.9). A biproduct of consistency is the order of the method, defined as the rate a t  
which the continuous and discrete polars approach each other. It is shown in A that 
the present quadratic-spline scheme is of O(hz) .  
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FIQURE 4. The polars of the discrete dispersion relation corresponding to 7 = 0,0.2,0.5,1.0 and the 
grids (a)  (F, = d 2 , a  = l),  and ( b )  Fh = l , a  = 4), over the principal wavenumber domain. The 
dotted lines show the corresponding polars of the continuous dispersion relation. The small figure 
amplifies the region around the origin. The vectors drawn on the various branches of the polars 
show the direction of propagation of the corresponding wave systems. 
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As h,, h, decrease, the size of the principal wavenumber domain increases and the 
disparity between the continuous and discrete polars is removed to infinity. In actual 
computations, however, the panel dimensions are kept finite, and the short scales 
corresponding to wavenumbers u and v comparable to or larger than the cut-off 
values n/h, and x / h ,  respectively are substantially distorted relative to their 
continuous limit. 

A closer examination of this discretization error is illustrated in figure 5 (a ) ,  where 
the polars of the discrete dispersion relation for 7 = 0 are compared to their 
continuous counterparts over a larger portion of the wavenumber space. The grid 
parameters are taken to be Fh = 1 and a = 1. As discussed earlier, the discrete polars 
are in very close agreement with the continuous ones close to the origin, departing 
from them at larger wavenumbers, especially outside the principal wavenumber 
domain. Using the theory presented in $2, the direction of propagation of the various 
wave components that satisfy the discrete dispersion relation, as well as the 
associated wave amplitude in the far-field, can be deduced from the geometrical 
characteristics of the polars shown in figure 5(u) .  

The direction in the far field where a wave component corresponding to the point 
A on the discrete polar will be observed, is defined by the vector normal to the polar 
at the point A ,  shown in figure 5(u) .  As the point A moves on the polar from w = 0 
to v = x / h y ,  the group-velocity vector forms an angle with the z-axis which increases 
from zero at  w = 0 to its maximum value at the inflection point K and then decreases 
to zero at v = x/h , ,  owing to the v-periodicity of the polar. The inflection point 
corresponds to the wave component along the Kelvin angle, which in the discrete 
problem differs slightly from 19.5", owing to discretization error. The corresponding 
variation on the continuous polar shown in the same figure is quite similar for small 
and moderate wavenumbers inside the principal wavenumber domain, while larger 
discrepancies occur at wavenumbers w comparable to or greater than x/h, .  In 
particular, the shortest wave component that can be resolved by the adopted grid is 
found along the track of the disturbance in the discrete solution, although according 
to the continuous dispersion relation it should be visible a t  a small angle off the 
track. 

The difference between the continuous and discrete polars is more dramatic in 
figure 5 ( b )  which corresponds to the same Fh = 1, but a different panel aspect ratio, 
a = 4. Here the discrete polar permits steady-state wave components to be visible at  
right angles to the track of the disturbance, therefore defining a numerical Kelvin 
angle of 90". Such physically unacceptable wave fields are also possible in the 
unsteady case and correspond to the discrete polar topologies shown in figure 4 ( b ) .  
It will be shown in $ 4  that this topology corresponds to unstable schemes. 

Owing to the periodicity of the polars, there exists an infinity of points A,, with 
a normal of the same direction to that at  point A .  This doubly infinite array of points 
represents a collection of wave disturbances of disparate wavelengths occurring in 
the same angular direction in the far field. Of all these wave components, only the 
one corresponding to the point A,, = A = (uA, wA) in the principal wavenumber 
domain can be resolved by the adopted discretization. Its amplitude is, however, 
affected by the cumulative contribution of all the other shorter wave components 
which, by virtue of (3.12), are weighted by the decaying amplitude of the spectrum 
flu,.) at the corresponding reflection of A .  This 'reflection' of the energy of wave 
components which cannot be resolved by the free-surface grid into the principal 
wavenumber domain is called aliasing. 

The discretization error is quantified by the application of (2.5) and (2.6) to (3.12). 
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FIGURE 5. The periodic structure of the polars of the discrete dispersion relation at r = 0 and for 
the grids (a) (Fh = 1, a = l), and (b)  (F’ = 1, a = 4). The squared region in the middle is the principal 
wavenumber domain. The dotted lines show the corresponding polars of the continuous dispersion 
relation. All of the marked points A,, show the wave components whose energy gets aliased on the 
one principal wave component denoted by A .  
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The velocity potential of the numerical wave disturbance in the far field, to leading 
order for large rj = lrjl = I (xj ,  yj)  I, is proportional to 

where 8 is the angular position in the far field defined by the group-velocity vector 
(2.5) corresponding to the point A ,  and K(A) is the common curvature of the discrete 
polar a t  the points Akl.  

The wavelength found a t  the angular position 8 in the far field of the numerical 
solution differs from that of the continuous solution owing to the disparate locations 
of the continuous and discrete polars. This discrepancy in the wavelengths is referred 
to as ‘numerical dispersion ’. The corresponding amplitude of the numerical solution 
is affected by the discretization error not only via the different gradient and 
curvature of (2.4) and (3.14), but also owing to aliasing. Evidently, the effect of 
aliasing is more pronounced for excitations of the slowly decaying spectrum of the 
forcing, flu, v), as IuI, I V I  + m. 

4. Stability of the discretization scheme 
A discrete dispersion relation may be defined for any selection of the parameters 

of the numerical algorithm, but only a subset of stable selections of its parameters 
results in a ‘physically acceptable’ wave disturbance. This section derives such a 
stability criterion which restricts the choice of the panel aspect ratio a,  the grid 
Froude number Fh = U/(ghx)t  and the reduced frequency 7 = wU/g .  

The stability analysis of numerical schemes for the solution of partial differential 
equations of mathematical physics typically applies to initial-value problems and 
requires that the numerical solution remains bounded in time, under the assumption 
of harmonic variation in space. The present analysis studies the stability of the flow 
under the assumption that it has reached a steady-state time-harmonic limit. The 
stability condition is therefore not related to boundedness in time, assumed by the 
harmonic time dependence, but is associated to the well-possedness of this steady- 
state limit. 

In the continuous problem, any selection of the wavenumber vector k = (u,w) 
corresponds to two distinct real frequencies w.  This follows from the continuous 
dispersion relation (2.3) and (2.4), regarded as a quadratic equation for w. The 
discrete dispersion relation (3.14) on the other hand, accepts real roots for the 
frequency w only for values of k that render the discriminant 

d ( G ,  6 ; F,,  a )  = Fi[Z:(G, 6 ; a) - Zo(G, 6 ; a )  Z,(zi, 6 ; a)]  + Co(4, 6 ; a )  (4.1) 

positive. The vanishing of d for a wave component k = (u, v) which also satisfies the 
discrete dispersion relation 

@(u, w ;  w )  = 0, (4.2) 
is equivalent to the equation 

aw(u, V ;  0) 

aw 
= 0, (4.3) 
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which, by virtue of (2.5), corresponds to an infinite group velocity for the wave 
components satisfying (4.2) and (4.3). This condition will next be shown to be 
equivalent to the existence of a non-unique solution for the time-harmonic wave 
disturbance governed by the dispersion relation W = 0 signifying the onset of 
instability in the discrete problem. 

The continuous and discrete solutions represented by (2.2) and (3.12) respectively 
represent non-unique wave disturbances, unless a radiation condition is satisfied. For 
a time-harmonic wave disturbance of frequency w it  can be enforced by shifting the 
real frequency o to the complex value o - is, where the Rayleigh viscosity E is a small 
positive constant. The effect of this complex shift of the frequency is to displace the 
poles of (2.2) and (3.12) in the complex u- and w-planes by amounts proportional to 
iea#/aw and isaW/au respectively. It is evident from (2.3) and (2.4) that a#/aw =I= 
0 for all (u, w) subject to  the continuous dispersion relation. In  the case of the discrete 
dispersion relation, however, and when a W / a w  = 0, the corresponding pole is pinched 
on real values of (u, w), in spite of the Rayleigh shift of the frequency. Since the 
radiation condition for the associated wave component cannot be enforced, the 
problem is ill-conditioned, accepting multiple solutions, and the numerical scheme 
becomes unstable. 

Unstable wavenumbers k = (u, w), should they exist, are solutions of the system of 
transcendental equations (4.2) and (4.3), where the latter may be replaced by the 
equivalent condition 

which is independent of the frequency. A condition between the parameters w ,  Fh and 
a is sought such that there exist pairs (u, w) that satisfy both (4.2) and (4.4). Owing 
to the periodicity and symmetry properties of W and A in the u- and w-directions, it 
is sufficient to seek the intersection of the curves (4.2) and (4.4) in the upper half of 
the principal wavenumber domain, IuI < n/h,, 0 < w < n/hy.  

Figure 6 plots the curve (4.4) for the grid (Fh = 1 , a  = l),  which divides the 
principal wavenumber domain into the shaded regions symmetric about the w-axis, 
which correspond to A < 0, and the unshaded region which corresponds to A > 0. 
The discrete dispersion-relation polars for these values of Fh and a lie in the unshaded 
region since they all correspond to real frequencies. Two such polars, corresponding 
to T = 0 and T = 1, are illustrated in figure 6(a). 

With increasing frequency, both branches of the polars shift to larger values of u 
until the right-most branch becomes tangent to the shaded region. The intersection 
of the curve (4.4) with a dispersion-relation polar at some finite angle would indicate 
that part of the latter would lie in the shaded region where A < 0, which is a 
contradiction. Tangency of the dispersion relation polar to the curve A = 0 indicates 
that a pair of (u, w) are simultaneous solutions of (4.2) and (4.4) and that the scheme 
is unstable. The corresponding reduced frequency of the forcing is given by 

A(u,w;F,,a) = 0, (4.4) 

and is obtained by making use of (4.3). In  figure 6 ( a )  this tangency occurs first a t  the 
point A for T = rA = 1.48. For values of T > rA the contact point moves from A to B, 
with corresponding values of T ranging in 1.48 = rA < T < rB = 1.68. Therefore, the 
values rA and rB provide lower and upper bounds, respectively, for the reduced 
frequencies a t  which the grid of (Fh, a) results in an unstable numerical scheme. 

Figure 6 ( b )  plots the dispersion relation polars for the same grid (Fh = 1,  a = 1) and 
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Li = uh,/2n 

FIGURE 6. The polars of the discrete dispersion relation corresponding to (a) T = 0, T = 1.0, T = 
= 1.48, and ( b )  T = T~ = 1.68, T = T~ = 2.69, T = 3.0, for the grid (Fh = 1 ,  a = l), over the principal 

wavenumber domain. The shaded region corresponds to A < 0 (equation (4.1)). The right-hand 
branch of T = T~ and T = rB are tangent to the shaded region at  the points A and B respectively. 
The right- and left-hand branches meet at  the point C for T = T,, while for T = 3.0 > T~ they merge 
into a common branch. 

three frequencies T = T~ = 1.68, T = rC = 2.69 and r = 3. For T = T~ the two 
branches of the polar meet on the u-axis and merge into one branch for larger values 
of T .  Figure 6 ( b )  also plots the vectors normal to these polars which show that the 
group-velocity vector reverses direction at the point where the polar is tangent to the 
A = 0 curve. This reversal of the group velocity for the wave system corresponding 
to the right-most branch of the polar relative to the continuous problem is physically 
unacceptable. Therefore, the numerical solution for any value of T greater than rA is 
defined to be unstable even when the polar is not tangent to the shaded region. 

As discussed in $3, the dispersion-relation polars may exhibit a significantly 
different topology for other choices of the grid parameters (Fh, a), see e.g. figure 4 (b) .  
In this case the shape of the shaded region A < 0 changes as shown in figure 7 (a ,  b) .  
The discussion of the preceding paragraphs applies to this topology also. Here, the 
lower bound of the reduced frequency at  which instability occurs is rA = 0, owing to 
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FIQURE 7. The polars of the discrete dispersion relation corresponding to (a) T = T, = 0,  T = 1.0, and 
(b) T = T~ = 2.66, T = 3.0, for the grid (F, = 1, a = 4), over the principal wavenumber domain. For 
this topology the polars for all T E  [ O , T ~ ]  are tangent to the shaded region, where A < 0 (equation 
(4.1)). Note the reversing of the direction of wave propagation along the right-most branch of the 
polar r = 1, taking place at the point where the branch becomes tangent to the shaded region 
(A < 0). The right- and left-hand branches meet at the point C for T = T ~ ,  while for T = 3.0 > T~ 
they merge into a common branch. 

the identity Z1(u = n/h,,v;a) = 0. This indicates that a pole is pinched on real 
values of (u ,v)  for all reduced frequencies 7 smaller than 7B, including the steady 
problem (w = 0, U > 0). The behaviour of the branches of the polars with increasing 
frequency is similar to that shown in figure 6(a ,  b )  and is shown in figures 7(a) and 
7 (b ) .  

It follows that, for any given grid defined by the parameters (Fh, a) ,  there exists a 
critical reduced frequency such that the discretization leads to a stable and 
physically acceptable numerical solutions for forcing frequencies T < 7A.  

Figure 8 summarizes the results of the stability analysis by plotting in the plane 
(Fh, a) stability curves corresponding to different values of the reduced frequency T 

that subdivide the plane into domains of stability and instability. For example, for 
the forcing frequency T = 2 values of (Fh, a) that correspond to a point that lies to the 
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a = h,/h, 

Fh = Ulgh, 

FIGURE 8. The stability diagram for the quadratic-spline scheme. Grids that are mapped on the 
(F,,a)-plane at points to the right of a particular curve are stable when used to discretize the 
problem forced at the reduced frequency r that corresponds to that particular curve. 

right of the corresponding stability curve lead to a stable numerical algorithm. This 
definition extends to other values of the reduced frequency 7. 

The relative positions of the stability curves in figure 8 suggests that a grid (Fh, a) 
which is stable for a given value of 7 will also be stable for all smaller values of the 
reduced frequency. Therefore, a grid that is stable for the highest reduced frequency 
of interest in a practical application can and should be used for all smaller frequencies 
because of the computational savings associated with regriding and the set-up of the 
solution matrix. 

5. Discrete dispersion relations for transient flows 
The time-harmonic problem studied in this paper is a special case of flows subject 

to the more general transient free-surface condition (2.1). The present section 
outlines extensions of the analysis of §§3 and 4 to flows where the discretization of 
the free surface is coupled with finite-difference schemes for the approximation of the 
time derivatives in the free-surface condition. The detailed study of this method will 
be the subject of future research aiming a t  the solution of linear, second-order and 
nonlinear free-surface flows in the time domain. 

Consider the free-surface condition (2.1) and apply Green’s theorem as in $ 3  to 
obtain the integro-differential equation for the velocity potential #(x, t )  over the 
mean position of the free surface 
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where H ( t )  = 0, t < 0 and H(t )  = 1, t > 0 and o is a fixed frequency. We study here 
cosine- or sine-like excitations which start from rest, corresponding to the real and 
imaginary parts of (5.1) respectively. A more general transient forcing may be 
studied in a similar manner. Adopting the discretization (3.2) for $ ( x , t )  with the 
weights aj(t) now being functions of time, and after discrete Fourier transformation 
in space and continuous Fourier transformation in time, we may represent the 
numerical solution at  the collocation points (xj,yj) in the form 

where @ is given by (3.6)-(3.13). The frequency contour of integration lies below all 
singularities of the integrand in the complex u-plane in order to enforce the causality 
condition that the solution vanishes for t < 0. 

The steady-state component of the wave disturbance (5.2) is obtained from the 
residue of the integrand at (T = w ,  and may be seen to be identical to expression 
(3.12), the properties of which have been studied in $53 and 4. The transient 
component is associated with the remaining singularities of the integrand in the u- 
plane and may be bounded or unbounded in time. The latter case signifies the 
presence of an instability which may be characterized as absolute or convective by 
the theory reviewed by Bers (1983). 

If the solution of (5.1) is desired a t  finite time, the time derivatives must be 
approximated by finite-difference schemes. The resulting solution is discrete in both 
space and time and may be again cast in the form (5.2), where now the discrete 
dispersion relation is given by (3.13) and (3.14) with 

Qu, W ;  u ; F h ;  a) = ZJu, w ; a)D(u ,  At) -23 ,  Zl(u, v ;  a)S(u, At) 

--Fi C,(U, v ; 01) + 1 . (5.3) 

The operators D(a,  At) and S(u ,  At) are the time discrete Fourier transforms of the 
finite-difference approximations of the double and single time derivatives. In  the 
limit as the time step At+O they tend to  -uz and iu respectively. 

The success of the numerical method analysed in the present paper for linearized 
time-harmonic and transient flows also depends on the proper enforcement of the 
radiation condition that the energy of the wave disturbance is absorbed a t  infinity. 
The analysis of $4 3-5 assumes that the free-surface discretization extends to infinity. 
I n  practice the extent of the free-surface grid will be finite and the availability of 
localized or distributed energy-absorbing conditions is essential. For the forward- 
speed time-harmonic flow, effective localized conditions are presented in $6. I n  
transient zero- or forward-speed flows absorbing conditions may be obtained by 
utilizing the theory of this section. Time-marching schemes can be designed that 
introduce a controllable amount of damping to the numerical wave disturbance, 
therefore reducing its amplitude. The introduction of numerical damping is desirable 
only in the vicinity of the boundary of the free-surface discretization, and in practice 
may be introduced by utilizing time-marching schemes with different properties in 
different parts of the computational domain. 
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6. Numerical results 
The present section presents computations of steady and unsteady wave patterns 

generated by a submerged point source, a thin strut and a thick hull form. Solutions 
for the submerged source and the thin strut can be obtained in the form of inverse 
Fourier integrals. These solutions will hereafter be referred to as continuous solutions, 
since they do not involve discretization of the geometry nor of the unknown velocity 
potential. Comparison between the continuous and discrete solutions associated 
with the aforementioned wave flows is presented in this section and it confirms the 
convergence properties of the proposed numerical scheme. 

Denote by FS the free surface discretized with panels and S, the wetted surface 
of the ship. Applying Green’s theorem as in $3, the right-hand side of (3.1) becomes 

where n is a unit vector normal to S, pointing out of the fluid domain. If the ship 
surface is replaced by a point wave source located a t  xo = (0, 0, -a), the surface S, 
may be defined to be a sphere of small radius E centred a t  x,. The velocity potential 
$([) on its surface behaves locally like l / s  and in the limit as E +  0 the expression (6.1) 
reduces to i 

W(x) = -2.- 
Ix--oI ’ 

where x lies on the free surface. The discretization of (3.1) and (6.1)-(6.2) involves the 
truncation of the free surface FS upstream, downstream and at some transverse 
distance from the disturbance and also the distribution of plane quadrilateral panels 
on FS and on the ship surface S,. On both surfaces, the velocity potential $([) is 
approximated by the quadratic-spline representation (3.2) defined relative to local 
panel-fitted coordinate systems. The spatial convective derivatives in the free- 
surface condition are evaluated by direct differentiation of the underlying basis 
functions and the integral equation is collocated at the panel centroids. Further 
details on the discretization are presented in A. 

A necessary complement to the stability analysis presented in $53 and 4 is the 
enforcement of proper ‘radiation ’ conditions a t  the boundary of the free-surface grid. 
In steady forward-speed flows the wave disturbance trails the disturbance and is 
confined within the Kelvin angle of 19.5’. In  time-harmonic flows, no wave systems 
are present upstream for 7 = wU/g  > $, the wave disturbance being confined in a 
trailing sector with enclosed angle that decreases with increasing 7 (Wehausen 6 
Laitone 1960). For the time-harmonic problem results are presented here for 7 > t ,  
which corresponds to the range of speeds and frequencies of most practical interest 
in the ship motion problem. 

In  the steady problem, it is known in A that the condition of no waves upstream 
may be enforced by truncating the free-surface discretization a t  a sufficient distance 
upstream of the disturbance and enforcing the vanishing of both the wave elevation 
and its slope a t  the upstream truncation boundary. The corresponding condition in 
the time-harmonic problem for 7 > $ is 

( i w + ~ & ) +  = ( i u + ~ & )  2 4 = 0. 
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The transverse truncation of the free-surface grid is located outside the trailing wave 
sector and the condition (a2q5/ay2 = 0) is enforced. No condition is enforced at  the 
downstream truncation which intersects the wave pattern. The flow symmetry 
condition (aq5lay = 0) is imposed along the x-axis upstream and downstream of the 
ship, and the ship-hull normal velocity condition is imposed along its waterline. 
Finally, the natural spline condition is employed on the hull surface, except on the 
waterline where continuity of the value of the potential on the free surface and on 
the hull is enforced. The performance of the algorithm with the interior numerical 
properties described in $$3 and 4 and the boundary conditions presented in this 
section is illustrated below. 

Figure 9( a)  respectively show the continuous and discrete solutions for the steady 
wave elevation due to a translating point source submerged at  d g / V  = 0.3 below the 
free surface. The continuous solution (figure 9 a )  is correct to single-precision 
accuracy and has been obtained from the evaluation of the Havelock wave source 
potential using the algorithms developed by Newman (1987) and Clarisse (1989). The 
free-surface grid used for the computation of the discrete solution is (Fh = 4 2 ,  a = 
2) and its extent is shown in figure 9(b). Figure 9(c) shows contour plots of the same 
wave patterns confirming the very good agreement between the continuous and 
discrete solutions. 

Computations of the steady ship-like pattern generated by a thin strut of uniform 
vertical geometry, infinite draught and a parabolic waterline are shown in figure 
10(a, b, c). For a small strut thickness, the hull boundary condition can be applied on 
the y = 0 plane and Michell’s thin-ship theory may be applied to obtain a continuous 
solution for the wave pattern in terms of Havelock wave sources of known strength 
distributed on the strut centreplane. The corresponding Kelvin wave pattern 
downstream of the strut advancing at  a Froude number F = U/(gL)i = 0.4 is shown 
in figure 10 (a)  and has been evaluated by Clarisse (1989). The discrete solution for 
the wave pattern is shown in figure 10(b) and was obtained using the grid (Fh = 4 2 ,  
a = 2). The agreement is very satisfactory both for the transverse and the shorter 
diverging waves which in the numerical solution are seen to persist at a significant 
distance downstream of the strut owing to the absence of numerical dissipation. The 
numerical dispersion is also seen to be negligible for the selected values of F,, and a. 
The accurate prediction of the amplitude and location of both the long and short 
wave scales in the Kelvin wake is also evident in the contour plot shown in figure 
lO(c). 

Figure 11 (a ,  b,  c) illustrates computations of the steady wave pattern generated by 
the Wigley hull advancing a t  a Froude number 0.32. The Neumann-Kelvin free- 
surface condition is used, and the grid, which is shown in figure 11 (a ) ,  is characterized 
by Fh = 4 2  and a = 2. The hull beam-to-length ratio is 0.1, the draught-to-length 
ratio is 0.0625 and the waterline and station variation are both parabolic. The 
contour plots, figure 11 ( c ) ,  illustrates quite clearly the transverse waves and two sets 
of diverging waves originating from the bow and stern. The extent of the 
computational domain is that shown in the figure and no wave reflections are seen 
to occur from its boundaries. For the selected values of Fh and a, 2080 panels are 
distributed on half the free surface and half the hull, after taking into account the 
flow symmetry about the y = 0 plane. 

The real part of the velocity potential of the time-harmonic disturbance flow on 
the free surface, due to a point source submerged at  a distance d g / V  = 0.45 below 
the free surface and pulsating at  T = I is shown in figure 12(a, b) .  Figure 12(a) 
illustrates the discrete solution obtained using the grid (Fh = 2, a = 2). In figure 12(b) 
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FIGURE 9. (a) The continuous and ( b )  the discrete solution for the wave field due to a steady Kelvin 
source submerged at  a depth d = 0 .31Y/g ,  where U is the speed of forward translation. The source 
point is shown in the figures by the asterisk. The grid used for the computation of the discrete 
solution is (F, = d 2 , a  = 2). ( c )  Contour plots of the wave elevation due to the submerged Kelvin 
source of (a): comparison between the discrete solution (top half) and the continuous solution 
(bottom half ). 
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FIGURE 10. (a) The continuous and ( b )  the discrete solution for the wave elevation due to a ‘thin 
strut’ advancing at Froude Kumber F = 0.4. The ‘thin strut’ has parabolic waterlines with beam- 
to-length ratio B/L  = 0.1, uniform geometry in the vertical direction and infinite draught. The grid 
used for the computation of the discrete solution is (F, = 2/2, a = 2) and consists of 1200 panels on 
half the free surface. ( c )  Contour plots of the wave elevation due to the ‘thin strut’ of (a) :  
comparison between the discrete solution (top half) and the continuous solution (bottom half). 

10 FLM 215 
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FIQURE 11. (a) The grid used for the solution of the steady wave flow around the Wigley hull 
advancing at  Froude number F = 0.32. The grid parameters are (F, = d2, a = 2) and it consists of 
1960 panels on half the free surface and 120 panels on half the hull surface. The Wigley hull is 
defined by both parabolic waterlines and sections, with beam-to-length ratio B/L = 0.1 and 
draught-to-length ratio D / L  = 0.0625. (b) Prospective view and ( c )  contour plots of the discrete 
solution for the wave elevation around the Wigley hull advancing at Froude Number F = 0.32, 
using the grid shown in (a). 
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FIGURE 12. (a) The real part of the discrete solution for the velocity potential on the free surface 
due to a submerged point source with a time-harmonically oscillating strength. The source is shown 
by the asterisk and is submerged at a depth d = 0.45V/g, where U is the speed of forward motion, 
and the reduced frequency of oscillation is 7 = 1.0. The grid used for these computations is (Fh = 
2, a = 2). (b) Contour plots of the real part of the velocity potential on the free surface due to the 
time-harmonic wave source of (a ) :  comparison between the discrete solution (top half) and the 
continuous solution (bottom half). 

10-2 
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FIGURE 13. The real part of the discrete solution for the wave elevation around the Wigley hull 
(figure i la)  advancing a t  Froude Number F = 0.32 while undergoing a time-harmonic heave 
oscillation a t  reduced frequency 7 = 1.0. The grid used for these computations is (F' = 2, a = 2) and 
consists of 2068 panels on half the free surface and 240 on half the ship surface. (a) Prospective view 
and ( b )  contour plots. 

the discrete solution is compared with the continuous solution, obtained from the 
explicit expression for the time-harmonic wave source potential (see e.g. Wahausen 
& Laitone 1960). Two wave systems, consisting of quite disparate lengthscales, are 
present in figure 12 and are both accurately described by the numerical solution. 
Each corresponds to a branch of the dispersion relation polar plotted in figure 4. The 
right branch of the T = 1 polar in the '(u, v)-plane corresponds to the wave system 
consisting of short transverse and diverging waves which are clearly visible in figure 
12(a). The transverse waves of the wave system corresponding to the left branch of 
the same polar are less evident but may be seen to modulate the short waves along 
the track of the source. The crests of the diverging waves of the same system are 
nearly parallel to  the x-axis, which may be verified from figure 4(a) by observing that 
the u-wavenumber of the inflection point of the corresponding branch is nearly zero. 

Finally figures 13 ( a )  and 13 ( b )  show the discrete solution for the real part of the 
time-harmonic wave elevation around the Wigley hull advancing a t  a Froude 
number 0.32 and forced in a time-harmonic heave oscillation a t  T = 1. Notable is the 
absence of the transverse or divergent components of the wave system along the ship 
hull, attributed to cancellation effects. 
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7. Summary 
The stability properties and performance of a Rankine panel method are studied 

for the prediction of steady and time-harmonic ship wave patterns. It is shown that 
the propagation of the wave disturbance over the discretized free surface is governed 
by a discrete dispersion relation. Comparison with its continuous counterpart 
permits the rational analysis of the numerical properties of the selected com- 
putational scheme which is shown to be free of numerical damping and possess a 
numerical dispersion of cubic order. The discrete dispersion relation is also used to 
derive a numerical stability criterion which restricts the selection of the grid Froude 
number relative to the aspect ratio of the panels used to discretize the free surface. 

Computations were carried out of the steady and time-harmonic wave patterns 
around elementary singularities, a thin strut and a realistic ship form. Comparison 
with analytical solutions confirms the numerical qualities and convergence of the 
algorithm which, owing to the absence of numerical damping, is capable of resolving 
and propagating a significant distance downstream short scales in the wave pattern. 
The accurate computation of the steady and unsteady wave patterns permits the 
implementation of this numerical algorithm for the evaluation of the wave resistance 
acting on a ship in calm water as well as the time-harmonic hydrodynamic forces and 
motions of ships in regular waves. 

The methodology is outlined for the extension of the present algorithm to three- 
dimensional transient free-surface flows. The associated numerical analysis can also 
be extended to schemes for fully nonlinear free-surface flows and will permit the 
understanding and fundamental resolution of the numerical instability present in 
quasi-Lagrangian algorithms for the solution of fully nonlinear zero- and forward- 
speed free-surface flows. 
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OCE8980003P). 

R E F E R E N C E S  

AANESLAND, V. 1986 A theoretical and numerical study of the ship wave resistance. Ph.D. 
dissertation, Department of Marine Technology, The Norwegian Institute of Technology, 
Trondheim, Korway. 

BERS, A. 1983 Space-time evolution of plasma instabilities - absolute and convective. Handbook 
of Plasma Physics, vol. 1, Chapter 3.2. 

CLARISSE, J. M. 1989 On the numerical evaluation of the Keumann-Kelvin Green Function. SM 
thesis, Department of Ocean Engineering, MIT, USA. 

DAWSON, D. W. 1977 A practical computer method for solving ship-wave problems. 2nd Intl Conf. 
on Numerical s h i p  Hydrodynamics. 

JENSEN, G. 1988 Numerical solution of the nonlinear ship wave resistance problem. 3rd fnt l  
Workshop on water waves and jloating bodies. 

JENSEN, G., MI, Z. X. & SODING, H. 1986 Rankine source methods for numerical solutions of the 
steady ship wave resistance problem. 16th Symp .  on Naval Hydrodynamics. 

JENSEN, P. S .  1987 On the numerical radiation condition in the steady-state ship wave problem. 
J .  Ship Res. 31, pp. 14-22. 

LIQHTHILL, M. J. 1960 Studies on magneto-hydrodynamic waves and other anisotropic wave 
motions. Phil. Trans. R. SOC. Lond. A 252, 397-430. 



288 

NEWMAN, J. N. 1987 Evaluation of the wave-resistance Green function: Part 1 - The double 
integral. J. Ship Res. 31, 79-90. 

NI, S. Y. 1987 Higher order panel methods for potential flows with linear or nonlinear free surface 
boundary conditions. Ph.D. dissertation, Division of Marine Hydrodynamics, Chalmers 
University of Technology, Goteborg, Sweden. 

D. E .  Nakos and P. D .  Sclavounos 

RAVEN, H. C. 1988 Variations on a theme by Dawson. 17th Symp. m Naval Hydrodynamics. 
SCLAVOUNOS, P. D. & NAKOS, D. E. 1988 Stability analysis of panel methods for free surface flows 

with forward speed. 17th Symp. 012 Naval Hydrodynamics (referred to as A). 
VAN BEEK, C. M., PIERS, W. J. & SLOOF, J. W. 1985 Boundary integral methods for computation 

of the potential flow about ship configurations with lift and free surface effects. NLR Rep. TR- 

WEHAUSEN, J. V. & LAITONE, E. V. 1960 Surface waves. In Handbuch der Physik, vol. 9, pp. 
446-778. Springer. 

XU, F. & LARSSON, L. 1986 A calculation method for the lifting potential flow around yawed 
surface piercing 3-D bodies. 16th Symp. on Naval Hydrodynamics. 

85-142 U. 


